MScalkalmazott matematikus
Study location | Hungary, Pécs |
---|---|
Type | Master, full degree studies |
Nominal duration | 4 semesters (120 ECTS) |
Study language | Hungarian |
Awards | MSc |
Course code | Natural Science |
Entry qualification | Bachelor diploma (or higher) The entry qualification documents are accepted in the following languages: English / Hungarian. Often you can get a suitable transcript from your school. If this is not the case, you will need official translations along with verified copies of the original. You must take the original entry qualification documents along with you when you finally go to the university. |
---|
Language requirements | Hungarian B2 |
---|
Other requirements | - notarized certificate of school leaving examination |
---|
More information |
---|
Overview
Entrance exam:
Yes
Type of entrance exam:
oral
Entrance exam location:
Electronic
Entrance exam description:
Making a 100-point ranking out of the admission requirements. 50 point could be given for the basic previous academic achievement and the other 50 point could be reached for the oral entrance exam.
Contact:
Ms Erika Szilágyi-Kispap
international coordinator
contact@gamma.ttk.pte.hu
Career opportunities
A képzés célja:
Az alkalmazott matematikus mesterképzés célja olyan szakemberek képzése, akik megalapozott elméleti, alkalmazott matematikai, informatikai tudással rendelkeznek. Képesek a szerzett tudást ipari, keresedelmi, mezőgazdasági, logisztikai, kommunikációs, pénzügyi, számítástudományi problémák elemzésére, modellezésére és megoldására alkalmazni. Továbbá a legjobbak képesek doktori képzés keretében elmélyíteni tudásukat.
Elhelyezkedési lehetőségek:
A régióban megindult és folyó ipari, energetikai, gazdasági, pénzügyi, biztosítási tevékenység képzett szakembereket igényel.
The purpose of the program:
The purpose of the Applied Mathematics MSc. program is to train experts who have firm knowledge in theory and application of mathematics and informatics. The gained knowledge allows the graduates to analyse, model and solve problems arising in industry, economy, agriculture, logistics, communications, finance and computer science. The program gives a basis for the best students to continue with their studies toward a PhD degree.